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 Motivation and challenges of computing multi-dimensional stellar structures
* The fully compressible time implicit code MUSIC

* Application to convective boundary mixing (overshooting)



Motivation for multi-D time-implicit simulations
in stellar physics

Charactevristics of stellar interiors:

Many (M)HD processes play key roles on stellar structure and
evolution

Convection, rotation, dynamo, mixing, turbulence, etc....

- Characterised by very different timescales

Sun 74~ (RYGM)2  ~ 30 min
Tconv ~ 6 days
Tthermal = GM2/(RL) ~ 2 |O7 )'I"

Convective
Thuc ~ [010yr r : /Zone
b | e 1 ,

- Very different lengthscales

Pressure scale height: Hp = dr/dInP

centre: Hp ~ Rstar  Surface: Hp~ 10-3- 102x Rsear

- Range of Mach numbers (M ~ 10-1° - > |)

Core ener



@ Many successes of |D (spherical symmetry) models based on phenomenological
approaches—> calibration of free parameters from observations

BUT & no predictive power
& degeneracy of solutions
& & do we really understand the physics!?

| D Phenomenological approaches have reached their limits

= Need for multi-dimensional models

(ideally in spherical coordinates)



Development of MUSIC “Multidimensionnal Stellar Implicit Code”
(Viallet et al. 2011, 2013, 201 6; Geroux et al. 2016; Pratt et al. 2016; Goffrey et al. 2016)

« Spherical geometry (2D or 3D)
- Fully compressible hydrodynamics
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With the radiative conductivity Y = 16071 /3kp

x Rossland mean opacity (OPAL) + realistic equation of state (ionisation,
partial degeneracy, etc...)




* Difficulty with various disparate timescales (e.g various stiff scales)

Tevol = Ttherm, Tconv, Trot, Thuc == Tdyn

A standard approach is to use a time-explicit integration method:

du(t)
dt

= f(u(t) —> w" ="+ Atf(u")

Strictly limited by the Courant- Friedrich-Lewy condition At < AtcrL

+ Hydro CFL: Atyyaro = min Az cs speed of sound
ul + ¢
R Azt
- Radiative diffusion CFL: Af,,q = min radiative diffusivity krad — X / PCp
rad
At A
For stability: CFLyy4r0 = <1 and CFL,,q = t <1

Alypydro Atrad



Stability limit for anelastic method  CFLaqy = <1

e Advantage of a time-implicit method:

du(t) _ f(u(t)) — un@: u" + Atf(u@

dt

No stability limit on the time-step

— adapted for problems with various stiff scales

Time step choice is driven by accuracy and physical considerations



The equations
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dtﬂu— ~V - (pii® i) — VP + pg = R}

More compactly

dU . T
E — RU (X)a U= (p,pé,pu) X = (p,e,u
Time implicit
At
U (X™) = U(X") + = (Ru (X") + Ry (X))

Newton-Raphson method and at each Newton iteration, solve a linear
problem:

-

WX = —Fy (X)




- Low storage Jacobian-Free-Newton-Krylov solver (Knoll & Keyes 2004)

(Jacobian is not stored and matrix-vector products are estimated with finite-differencing)

(Viallet et al. 2016; Goffrey et al. 2017)

« Benchmark tests (Rayleigh-Taylor, Kelvin Helmholtz, Taylor-Green vortex)
» Accurate for a wide Mach number range M ~ 106 - 1
(Goffrey et al. 2017)

e Finite volume method on a staggered grid
(really helps for hydrostatic equilibrium VP = -pg)
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* |nitial model from 1D stellar evolution calculation
» interface with Lyon code (Baraffe et al.) and MESA




¢ Other specificity (difficulty) characteristic of stellar interiors:

e Very different spatial scales from the centre to the surface:
pressure scale height Hp varies by several orders of magnitude

e Very steep gradients close to the surface
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= Use of a non-uniform grid at surface to resolve smaller scales/steep gradients
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Advantage of time implicit solver —> speed up the relaxation phase starting from 1D
initial model (large time steps + stability)
(key to explore a range of parameters like stellar masses)

Relaxation phase from a 1D initial stellar model
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Performance of MUSIC:
Simulations of a star in 2D/3D slices from central region to surface

Example for a young (pre main-sequence) star (1 Me, ~ 60% convective envelope)

« 2D simulations 2562 (r/R= 0.2 - 0.94)
~ 10 convective turnover timescales (Tconv ~ 106 s) —> ~ 5hr wallclock time with 16 procs

Comparison with time explicit code (A-MAZE) —> ~ 2 weeks wallclock time

» 2D simulations 10242 (r/R = 0.1 - 1) 'u

-1 CCOe+Ds

256 procs, 72hr wallclock time for one Tconv s

» 3D simulations 2563
with 512 procs, 6 days wallclock time for one Tconv




Applications to the problem of convective boundary mixing
(overshooting/penetration) in stars

- T

Long standing problem
affecting chemical mixing,
age of stars, transport of
angular momentum and
magnetic field.

Envelope

m (Great constraints from
asteroseismology

(Roxburgh 1965; Shaviv &
Salpeter 1973;

Schmitt et al 1984, etc...) Core

Standard treatment in 1D codes: mixing over
an arbitrary width dov= a Hp (a free parameter)




wApplication to convective boundary mixing in stellar envelopes

Penetration region | | | | |
Convective boundary mixing Analysis of 2D/3D simulations of a star with a large convective

envelope and a radiative core (Pre-main sequence star)
(Pratt et al. 2016, 2017)

= Goal: Derivation of a diffusion coefficient
D(r) characterising the mixing in the transition
region

Velocity magnitude : very high res 2432x2048



Overshooting region characterised by positive vertical kinetic energy flux and/or by change of sign
of the vertical heat flux (e.g Hurlburt et al. 1994; Rogers et al. 2006)

Fheat= p Vr (OT) Cp
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Non locality of convection: effect of the boundaries on the structures and velocities
(Pratt et al. 2016; 2017)

—0.1- r/R=0.21-1
r/R=0.31-0.67 r/R=0.1-0.97

Inward: grey
Outward: red



Impact of the surface treatment on the velocities in the convective zone and at the
interface convection/radiation
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Differences between 2D and 3D simulations: vorticity magnitude

(Pratt et al. 2018)

Fig. 5. Typical snapshot of the vorticity magnitude in simulation wide2D (upper left), and in a two-dimensional cut of simulation wide3D (upper
night). Color scales are 1dentical.



Differences between 2D and 3D simulations: velocity magnitude

short3Db
short2Db

250 300
|

200
I

Vrms(m/s)
150
|

100
I

50
|

o | (d)
l { l I I l l I
030 035 040 045 050 055 060 0.65

r/R



Horizontally and time-averaged Fkin and Fnheat —> give different overshooting width

Fk=1/2 v p V2
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Typical shape of the penetration depths (at a given time): extent of downflows beyond the
convective boundary varies with colatitude 6
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w Straight average miss the larger penetration events



penetration depth (h,)

0.1h,

Note: Qualitatively the same picture with 3D simulations

3D 2563

| | | | | | |
20 40 60 80 100 120 140

0 (degrees from North Pole)

|
160

0410 0.420

0.400

penetration depth (r/R)



Probability Distribution of penetration depths ro (depth of downflows penetrating at all angles
and sampled at fixed time intervals At =103s ~ 1/1000 Tconv)

PDF (KE) and PDF(heat) for the same data are remarkably similar
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Comparison between the probability distribution (PD) of penetration depths ro for all downflows and
the PD of maximal penetration depth rmax at any time
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Define a maximum penetration length Armax(t) = max | ro(t) - reconvl (0Over all angles at a given time t)

w Distribution of maximal penetration depths, linked to extreme events in the tail of the
distribution, can be described by extreme value theory

w Determine the probability of events that are more extreme than any previously observed
(used in Earth science, traffic prediction, unusually large flooding event, finance...)

- Cumulative distribution function based on the extreme value distribution function to model
the probability of maximal events has the general form:

\ X— —1/k
F(x) =cxp —(1+K( { ))

Where K is defined as the shape parameter. If k=0, the form reduces to:

o ool on(-(232)]




For most simulations, best fit given by a CDF «x exp(-exp(f(x))) form (with k —> 0).

CDF for different 2D simulations
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CDF for 2D and 3D simulations
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- Our idea is to associate a diffusion coefficient to the CDF for maximum penetration events
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Conclusion = Next steps

- Envelope overshooting
- Extension of multi-D simulations to different masses/ages and rotation rates
- Explore MHD effects
- Analyse the heat transport in the overshooting region

- Test new convective boundary mixing formalisms against observational constraints:
- Li as a function of age and rotation in solar type stars
- Speed of sound profile in the transition region of the Sun

- Extend our 2D/3D simulations to convective core overshooting:
- Can we apply the same statistical approach i.e presence of extreme penetrating
plumes responsible for the mixing?

- Test new transport coefficients (chemical species, heat) against asteroseismology
Search for signatures on mode properties that can be diagnosed by asteroseimology

- Exploit the idea of statistical methods by exploring other rare even algorithms



